

Subscriber access provided by ISTANBUL TEKNIK UNIV

Novel Diterpenoids from Taxus chinensis

Kaoru Fuji, Kiyoshi Tanaka, Bo Li, Tetsuro Shingu, Handong Sun, and Tooru Taga

J. Nat. Prod., 1993, 56 (9), 1520-1531• DOI: 10.1021/np50099a010 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50099a010 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

NOVEL DITERPENOIDS FROM TAXUS CHINENSIS

KAORU FUJI,* KIYOSHI TANAKA, BO LI,

Institute for Chemical Research, Kyoto University, Uji 611, Japan

TETSURO SHINGU,

Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 651-21, Japan

HANDONG SUN,

Kunming Institute of Botany, Academia Sinica, Kunming, Yunnan, China

and TOORU TAGA

Faculty of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606, Japan

ABSTRACT.—Five new diterpenoids, taxchinins A [3], B[4], and C [5], 19-hydroxy-7-epibaccatin III [6], and 10-deacetyl-10-oxobaccatin V [7], have been isolated from the needles and stems of *Taxus chinensis* together with twelve known compounds including taxol [1]. These structures were elucidated and identified by spectroscopic techniques. A single X-ray crystallographic analysis of taxchinin A [3] determined its unique 5/7/6-membered ring system. Taxchinins B [4] and C [5] were shown to have the same ring system.

Taxol [1], a highly functional diterpene isolated in 1971 (1) from the yew tree, Taxus brevifolia (Taxaceae), is currently considered the most exciting lead in cancer chemotherapy (2,3). It is currently in phase III clinical trials in the U.S. (4-7) and has also now been approved for clinical use in ovarian cancer by the FDA. In spite of the encouraging spectrum of activity, progress in developing taxol as a drug has been relatively slow, largely because of the lack of an abundant supply and difficulties in formulation (8). Some aspects of taxoids (9-11), such as their promising antitumor activity against different cancers, unique structural features, unusual biogenesis, and novel mode of action, stimulated the search for new related diterpenes having similar activity from the widely distributed species of the family Taxaceae (12-20) throughout the world. At the same time, several research groups have been involved in attempts of total synthesis of taxol (21-23) as well as partial synthesis (24-26) from abundant but inactive taxanes to meet the needs for clinical use. We report here the isolation and structure determination of five new diterpenoids together with eleven known congeners and one lignan from Taxus chinensis (Pilgre) Rehd. A part of this work has appeared in preliminary form (27). Taxus chinensis is an evergreen tree which grows in China, and from which the isolation of some taxoids has already been reported by a Chinese research group (28-30).

RESULTS AND DISCUSSION

Besides the five new diterpenoids 3–7 described below, eleven known congeners along with a lignan were isolated from MeOH extracts of needles and stems of *T. chinensis* collected at Yunnan province in China, in the yields shown in the experimental section. Known compounds are taxol [1] (1), cephalomannine (31), 7-epi-10-deacetyltaxol (17), baccatin III [2] (32), 10-deacetylbaccatin III (32), 19-hydroxybaccatin III (17), 10deacetylbaccatin V (31), baccatin IV (32), baccatin VI (32), taxagifine (33), 1-acetoxy-5-deacetylbaccatin I (34), and one lignan, α -conidendrin (35).

Taxchinin A [3] was determined to have a molecular formula of $C_{33}H_{42}O_{11}$ by analysis of the ¹³C-nmr and fabms data. The ¹H-nmr signals at δ 4.60 and 5.19 (each 1H, brs) and those in the ¹³C nmr at δ 152.9 (tert-C) and 113.0 (CH₂) suggest the presence of an exomethylene moiety. The presence of a benzoate was verified by the observation

of ¹H-nmr signals at δ 7.86 (2H, d, J=7.3 Hz), 7.55 (1H, m), and 7.42 (2H, m). Both ¹H- and ¹³C-nmr spectra revealed three 0-acetyl groups. Furthermore, it was shown by the DEPT and CH-COSY spectra that seven sp³ carbons bearing an oxygen functional group exist in the molecule, and four of them are responsible for the carbons carrying Oacyl groups and one for a carbon of a tertiary alcohol. The presence of two remaining secondary alcohols was confirmed by the downfield chemical shift of the methines from δ4.34(1H, brs, H-5) and 4.47(1H, brt, J=6.3 Hz, H-13) to 5.27 and 5.56, respectively, on acetylation with Ac₂O/pyridine (Table 1). The benzoyl carbonyl signal at δ 164.3 had a correlation with the H-10 and aromatic protons ortho to the carbonyl group in a 13 C-¹H long range COSY spectrum (36), which established the location of the benzoate at C-10. Consequently, the three acetoxyls must be at the positions C-2, C-7, and C-9. Detailed investigation of its ¹³C-¹H long range COSY spectrum (Table 1) revealed that the C-15, bearing geminal dimethyl groups, was unusually shifted downfield (\$ 75.6) as compared with that of conventional taxane diterpenoids (δ ca. 43) (37–40). This indicates that a hydroxyl group is located at C-15. These considerations lead to the possibility of a molecule with a novel 5/7/6-ring system, which accounts well for the ¹Hand ¹³C-nmr spectra observed. Thus, the unusual downfield shifts for the carbons of ring A in taxchinin A [3] (Table 1) are attributable to an increase in ring strain. A single crystal X-ray diffraction analysis (27) of taxchinin A [3] was carried out to confirm the structure deduced from the spectral data.

The eims of taxchinin B [4] showed a peak at m/z 784 corresponding to $[M-H_2O]^+$. The hrms gave an ion at m/z 784.3075 (calcd for $C_{44}H_{48}O_{13}$, 784.3094). The signals at δ 4.40, 4.50 (each 1H, d, J=7.7 Hz) in ¹H nmr and δ 74.7 (CH₂) in ¹³C nmr indicated the presence of an oxetane ring in the molecule. The comparison of ¹H- and ¹³C-nmr spectra of taxchinin B [4] (Tables 2 and 3) with those of taxchinin A $\{3\}$ led to the conclusion that taxchinin B [4] contains a ring system similar to that of taxchinin A [3] except for the presence of an oxetane ring. The signals at δ 68.2 (tert-C) and 75.6 (tert-C) in ¹³C nmr could be assigned to the C-1 and C-15, respectively, by DEPT, HETCOR, and ¹³C-¹H long range COSY spectra. Judging from the ¹³C-nmr and DEPT spectra, the presence of nine sp³ carbons bearing oxygens was suggested; seven of these are accounted for by carbons carrying 0-acyl groups, one by CH₂O of the oxetane, and the last one as the carbon of a tertiary alcohol. The existence of four acetyl and one benzoyl groups as well as one cinnamoyl group was revealed by both ¹H- and ¹³C-nmr spectra. The protons of the benzoyl and cinnamoyl groups appeared at δ 7.87 (2H, d, J=7.4 Hz), 7.43 (3H, m), 7.56 (5H, m), 7.80 (1H, d, J=16 Hz), and 6.47 (1H, d, J=16 Hz). Additionally, uv absorption maxima at 218, 223, and 280 nm (log ϵ 4.23, 4.24, and 4.23, respectively) also supports the presence of a cinnamoyl group. The prominent fragment peaks in the mass spectrum of taxchinin B [4] at m/z 131 [C₀H₂O] and 105 [C₂H₃O] are characteristic for loss of cinnamoyl and benzoyl groups. In order to determine the location of ester

F	
from	
bpm	
Ξ.	
ø	
(CDCI),	
nd 8 (
for 3 a	
Data	
¹³ C-nmr	
¹ H- and	
TABLE 1.	

		TABI	LE 1. ¹ H- and ¹³ C-nmr	: Data for 3 and 8	(CDCl ₃ , 8 in ppn	n from TMS).			
					Compound				
				ŝ				3 0	
Position	δ _c '	DEPT	¹³ C- ¹ H LRCOSY ^b	δ _H ^c	COSY	NOESY	δ_{c}^{d}	DEPT	δ _H ^c
1	68.5	с	Me-16, Me-17, H_3_H_10				68.7 ^f	c	
2	67.5	СН	Н-3	6.07 (d, 9.2)	Н-3	Me-17, Me-19	67.5	СН	6.05 (brd,
3	42.2	СН	Me-19	3.37 (d, 9.2)	H-2	Н-7	43.1	CH	9.4) 9.4)
4	143.7	U	Hα-20 H-3				140.1	υ	
5	74.5	СН	Hβ-20	4.34 (brs)	н₿-6	Нβ-20	75.8*	CH	5.27 (brs)
6	37.2	CH ₂		2.00 (α) (m) 1.80 (β) (m)	Hβ-6, H-7 H-5, Hα-6,		34.8	CH ₂	2.00 (m) 2.00 (m)
7	69.3	CH		5.49 (11 2 LL)	Η-/ Ηα, Ηβ-6	Н-3, Н-10	68.8 ^f	СН	5.47 (dd,
00 0	45.2	υĒ	Me-19, H-3, H-2	(11, (C, DD)	01 II	Mc 10	44.9 76.08	0	(C1 'C
	1.07	5 8	MC-17, 11-10	0.01 (0, 10.0)	01-11	Mc-17	ליני אסמא	5 8	рил) (оло 9.9) 6.66 (д
01	0.40	5	6-ш	0.00 (d. 10.0)	<i>к</i> -п	11-/, IME-10	6.00	5	0.00 (d, 10.8)
11 12	133.3 152.9	00	Me-18 Hα.B-14		-		135.5 148.9	00	
13	77.0	CH	Mc-18	4.47 (brt, 6.3)	Hα,Hβ-14	Me-16, Me-18	78.9	СН	5.56 (brt, 7)
14	40.6	CH ₂	Ηα-14	2.34 (α) (dd, 7, 15)	Н-13, Нβ-14		37.8	CH ₂	2.50 (dd, 7.6, 15)
				2.00 (β) (m)	H-13, Hα-14				2.00 (m)
15	75.6	υ	Me-16, Me-17, 2H-14, H-2				75.5	υ	
16	25.6	Me	Me-17	1.10 (s)		H-13	25.4	Me	1.15 (s)
17	27.7	Me	Me-16	1.19 (s)		H-2	27.6	, We	1.21 (s)
18	12.2	Me	Me-18	2.11 (s)		H-10, H-13	11.9	Me	2.12 (s)

1522

Continued	
TABLE 1.	

1.05 (s) 4.68 (brs) 5.27 (brs) 7.85 (d, 7.3) 7.41 (m) 7.55 (m) °. B 1.98 (s) 2.04 (s) 1.72 (s) 1.23 (s) 1.08 (s) 80 DEPT Me CH, งพื่งพื่งพื่งพื่งขึ่งบ CH CH CH 21.2' 170.9'' 21.7' 21.7' 20.6' 169.8'' 21.0' 21.5' 21.5' 13.3 115.4 171.7^h 164.5 129.0 129.7 129.0 ഄഀ H-2, H-9 Hβ-20 Hα-20, H-5 *o*-Ph, *p*-Ph *m*-Ph NOESY *m*-Ph Compound *o*-Ph, *þ*-Ph *m*-Ph COSY Hβ-20 Hα-20 *m*-Ph 1.04 (s) 4.60 (α) (brs) 5.19 (β) (brs) 7.86 (d, 7.3) 7.42 (m) 7.55 (m) °, 3 2.00 (s) 2.06 (s) 1.75 (s) ¹³C-¹H LRCOSY^b Me-19, H-3, H-9 H-9, Me (9-OAc) H-2, Me (2-OAc) H-10, 0-Ph 7-OAc DEPT CH, ပ မီ ပ မီ ပ မီ НU υυHO 171.3 21.4 170.1 21.8 21.8 169.6 20.7 133.0 13.4 113.0 128.7 164.3 129.1 129.4 ్లి p-Ph *m*-Ph..... 0-Ph 2-OAc C=0 7-OAc C=0 Me Me..... OBz C=0 *i*-Ph 19..... 20 9-0Ac C=0 Me Me 13-OAc C=0 Me.... 5-OAc C=0 Position

¹⁰⁰ MHz.

^bLong Range COSY.

⁴⁰⁰ MHz.

⁴50 MHz.

²⁰⁰ MHz.

ZUU MHZ.

⁽s.h. Assignments may be interchangeable in the vertical column.

			Compound		
Proton			5		
	δ _H	COSY	δ _H	COSY	NOESY
H-2	6.18 (d, 7.9)	H-3	6.55 (d, 7.3)	Н-3	15-OH, Me-16, Me-19
H-3	3.04 (d, 7.8)	H-2 11~ ć	3.18 (d, 7.7)	H-2	H-7
п-). Нα-6.	2.60 (m)	на-о Н-5, НВ-6, Н-7	4.9/ (d, /.3) 2.70 (m)	на-6 Н-5 На-6	Hα-6, Hα-20 H-5
	Ì			H-7	
Нβ-6	1.91 (44 83 15 4)	Ηα-6, Η-7		Hα-6, H-7	
Н-7	5.62 (t, 8.3)	Ηα,β-6	5.67 (t, 8.1)	Ηα.β-6	H-3. H-10
н-9	6.22 (d, 10.9)	H-10	6.56 (d, 11.3)	H-10	H-10, Me-16, Me-19
H-10	6.62 (d, 10.9)	6-H	6.77 (d, 11.0)	6-H	H-7, H-9, Me-18
H-13	5.64 (t, 6.7)	Hα,β-14, Me-18	5.71 (t, 7.7)	Hα,β-14	Me-18, Me-17
Ηα-14	2.46 (m)	H-13, Hβ-14	2.45	H-13, Hβ-14	
	-		(dd, 7.3, 14.3)		
Me-16	1.23 (s)		1.21 (s)		Н-2, Н-9, 15-ОН
Me-17	1.21 (s)		1.21 (s)		H-13, 15-OH
Me-18	2.02 (d, 1.8)	H-13	1.97 (s)		H-10, H-13
Me-19	1.68 (s)		1.87 (s)		HB-20
Hα-20.	4.40 (d, 7.7)	HB-20	4.19 (d, 7.7)	H β- 20	H-5, Hβ-20
Hβ-20.	4.50 (d, 7.7)	Hα-20	4.51 (d, 7.7)	Hα-20	Hα-20, Me-19
СНа=СНВ	6.47 (d, 16.0)	Hβ 			
	7.20 (d, 10.0)	ЪЦ			
HD-CI			2.62 (s)		Me-16, Me-17, H-2
Ph-H.	7.87 (d, /.3)		8.04 (d, 7.3)		
	(II) (II)		(5.1, b) (1.1)		
	7.56 (m)		7.63 (m)		
			7.49 (m)		
			7.35 (m)		
			7.22 (m)		
2-0Ac	2.01 (s)				
4-0Ac	2.01 (s)		2.17 (s)		
/-OAC	2.10 (S)		2.17 (s)		
9-0Ac	1.76 (s)		1.83 (s)		
'8 in ppm from TMS.		-			

TABLE 2. ¹H-nmr Data⁴ for 4 and 5 (400 MHz, CDCl₃).

1524

Journal of Natural Products

			Compound		
Carbon			4*	5⁵	
	δC	DEPT	¹³ C- ¹ H LRCOSY	δC	DEPT
C-1	68.2	с	H-10, Hα-14, Me-16, Me-17	68.1	с
C-2	67.9	CH	H-3	68.4	СН
C-3	44.7	СН	H-5, Me-19, Hα-20, Hβ-20	44.4	СН
C-4	79.4	C	Η-3, Η-5, Ηβ-20	79.1	С
C-5	84.7	СН	Η-5, Ηβ-6, Ηα-20	84.8	СН
C-6	34.8	CH ₂	Ηα-6, Η-7	34.8	CH,
C-7	70.6	CH	H-3, H-5, Hβ-6, H-9, Me-19	70.6	СН
C-8	43.7	C	H-2, H-3, Ha-6, H-9, H-10, Me-19	43.8	c
C-9	76.4	CH	H-10, Me-19	77.5	СН
C-10	68.6	СН	H-9	68.5	СН
C- 11	135.9	С	Me-18, H-13	136.4	C
C- 12	148.1	С	Me-18	148.0	Ċ
C-13	79.1	СН	Me-18	78.8	СН
C-14	37.3	CH,		36.7	CH.
C-15	75.6	c	15-OH, H-2, Ha.B-14, Me-16, Me-17	75.8	C C
C-16	27.7	Me	Me-16	27.7	Me
C- 17	25.4	Me	15-OH. Me-17	25.4	Me
C-18	12.1	Me	Me-18	11.8	Me
C-19	12.5	Me	H-7. Me-19	13.1	Me
C-20	74.7	CH.	H-3, H α -20	74.6	CH
2-OAc C=O	170.3	C	H-2, Me (2-OAc)	/ 1.0	
Ме	21.6	Me			
4-OAcC=O	169.2	C	Me(4-OAc)	170.5	C
Me	22.0	Me		21.6 ^d	M.
7-OAc C=O	169.8	C	H-7 Me $(7-OAc)$	169.4	C
Me	21.4	Me		21 0 ^d	Me
9-OACC=O	169.8	C	H_{-9} Me (9- OA_{c})	21.0	ivic
Me	20.6	Me	11-); Mc ()-OAC)		
13-0AcC=0	20.0	MIC		171 05	
Me				1/1.0	
$OB_7 C = O$	164 1	C	$H_{-10} \sim Pb (OB_{7})$	1667	
0020 0	104.1	Č	11-10, <i>0</i> -FII (OD2)	164.7	
				166.1	
Ծհ	12/1	c		100.1	
rn	120.1	ĉ		130.1	
	122.4	CU		129.0	
	120.6			129.1	
	120.5			133.7	CH
	129.0			133.2	CH
	129.0			133.1	CH
	120./			129.9	2XCH
	120.2	СП		129.4	
				128.8	СН
				128.)	СН
COCHA-CHA	1172	CH		128.2	СН
	1460		nu, np up		
	146.5				
coona-onp	100.5	C	n-13, Chu-Chp		

TABLE 3. ¹³C-nmr Data for 4 and 5 (CDCl₃).

^aMeasured at 100 MHz. ^bMeasured at 50.3 MHz. ^{cd}Assignments may be interchanged.

5 $R^1 = Ac, R^2 = R^3 = Bz$

6 R^1 =OH, R^2 =β-OAc, α-H 7 R^1 =H, R^2 =O

groups, a ¹³C-¹H long range COSY experiment was performed (Table 3). A correlation of the signal due to the benzoyl carbonyl at δ 164.1 with that of H-10 at δ 6.61 and the aromatic protons at δ 7.86 ortho to the carbonyl group suggested the location of the benzoyl group at the position of C-10. Furthermore, the cinnamoyl carbonyl signal at δ 166.5 had correlations with that of H-13 at δ 5.62 and those of two vinyl protons of the cinnamoyl group at δ 7.80 and 6.47, which established the location of the cinnamate at C-13. Consequently, the four acetoxyl groups must be at positions C-2, -4, -7, and -9. The stereochemistry of taxchinin B [4] was elucidated by a NOESY experiment (Figure 1). An examination of the NOESY data indicated a very close stereochemical relationship to taxchinin A [3], with a β orientation of ring D as in other known taxanes (37–40). Thus, ¹H- and ¹³C-nmr signals of taxchinin B were totally assigned by 2D nmr techniques (HH-COSY, CH-COSY, NOESY, and long range CH-COSY). Therefore, the structure of taxchinin B is formulated as 4.

Taxchinin C [5] showed an ion in the fabms at m/z 839 corresponding to $[M+H]^+$, and hrms exhibited an ion at m/z 716.2806 corresponding to $[M-PhCOOH]^+$ (calcd for $C_{40}H_{44}O_{12}$, 716.2831). Therefore, taxchinin C [5] has a mol wt of 838 with a composition of $C_{47}H_{50}O_{14}$. Both the ¹H- and ¹³C-nmr spectra of taxchinin C [5] (Tables 2 and 3) are similar to those of taxchinin B [4] except for the signals due to the ester groups. Thus, the main difference is derived from the presence of three benzoyl and three acetyl groups in taxchinin C [5]. The downfield shift of the signals for H-2, -3, -9, and -10 (Tables 2 and 3) in its ¹H-nmr spectrum suggested the location of three benzoates at positions C-2, -9, and -10, which was supported by an observation of the downfield shift of the signals for C-2 and C-9 and an upfield shift of C-13 in its ¹³C-nmr spectrum (Table 3). As a result, it was deduced that the three acetoxyls were located at C -4, -7, and -13. The DEPT and the other 2D nmr techniques, including ¹H-¹H COSY, HETCOR, and NOESY, were undertaken to confirm the structure proposed for taxchinin C [5].

It turned out that taxchinins A [3], B [4], and C [5] have a novel 5/7/6-ring system, which is a rearranged carbon skeleton of the known taxoids such as taxol. The same rearranged carbon skeleton has only appeared in the literature as the reaction products of taxol [1] in treatment with electrophilic reagents such as methanesulfonyl chloride and acetyl chloride (11,41) or of 10-deacetylbaccatin III [2] with organic acid (21,42).

Compound 6 showed ions at m/z 603, 625, and 695 in fabres, which correspond to

FIGURE 1. Key nOe's observed for taxchinin B [4].

n ppm from TMS).
0
(CDCI,
r
6 and
for
Data
¹³ C-nmr
- and
H'
TABLE 4.

			Compound				
Position		6				7	
	δ _H *	COSY	δ_{c}^{b}	DEPT'	δ _H ^c	$\delta_{\rm c}^{\rm d}$	DEPT
1			79.3	C		79.2	С
2	6.26 (d, 7.7)	H-3	74.7	CH	5.80 (d, 7.3)	74.9	СН
3	4.00 (d, 7.3)	H-2	40.8	CH	4.07 (d, 7.3)	39.6	CH
4			81.6	C		81.3	J
5	4.98	H-6	82.7	CH	4.92 (brt, 5.9)	82.7	СН
	(dd, 2.8, 9.4)						
9	2.20 (m)	H-5, H-7	35.5	CH_2		35.3	CH ₂
7	3.86	H-6, 7-αOH	72.4	CH	3.82 (brd, 12)	77.3	СН
	(ddd, 1.8, 5.1, 11.7)						
8			61.3	U		57.4	ပ
			210.0	C		208.9	J
10	6.86 (s)		78.8	CH		189.5	C
11			132.3	U		140.9	ပ
12			144.5	U		146.6	U
13	4.83 (m)	H-14, Me-18, 13-αOH	68.0	CH	4.92 (brt, 5.9)	67.7	CH
14	2.20 (m)	H-13	37.9	CH_2		38.7	CH_2
15			42.3	U		39.8	ပ
16	1.26 (s)		22.5	Me	1.08 (s)	26.2	Me
17	1.07 (s)		26.6	Me	1.08 (s)	22.4	Me
18	1.99 (d, 1.5)	H-13	15.9	Me	1.70 (s)	14.8	Me
19	4.48 (α)	НВ-19, 19-ОН	62.9	CH_2	1.96 (s)	14.4	Me
	(dd, 5.9, 12.5)						
	4.24 (B)	Hα-19, 19-OH					
	(dd, 7.9, 12.3)						
20	4.45 (d, 8.6)	Hβ-20	6.77	CH,	4.42 (d, 8.5)	77.4	CH,
	4.3/ (d, 8.6)	Hα-20	C / L I	ç	4.30 (d, 8.5)	0 0 0 1	ţ
	2 22 (c)		2010	لا ر		22.0	لا ر
	(8) 77.7		C.07	שור		0.22	TMIC

			Compound				
Position		6				7	
	δ _H ⁴	COSY	δ_c^{b}	DEPT	۶ ^н ς	$\delta_{\rm c}^{\rm d}$	DEPT
OAc			172.8	С			
	2.37 (s)		20.1	Me			
<i>i</i> -Ph			129.7	U	-	129.4	U
<i>o</i> -Ph	8.12	<i>m</i> -Ph	130.4	CH	8.12	130.3	CH
•••••••	(dd, 1.5, 7.0)				(dd, 1.6, 7.8)		
<i>m</i> -Ph	7.49 (m)	<i>o</i> -Ph, <i>p</i> -Ph	128.9	СН	7.50 (m)	129.0	Ю
p-Ph	7.62 (m)	m-Ph	133.9	СН	7.64 (m)	134.2	CH
PhCO			169.8	U U		167.4	U
7-αOH	4.94 (d, 11.4)	H-7					
13-aOH	2.07 (d, 4.0)	H-13					
19-OH	2.95	Hα,β-19	-				
	(dd, 5.9, 8.1)						
400 MHz.			-				

^b100 MHz, assigned by HETCOR and DEPT. ²200 MHz. ^d50 MHz, assigned by HETCOR and DEPT.

 $[M+H]^+$, $[M+Na]^+$ and $[M+glycerin+H]^+$, respectively. The mol wt of 602 with a composition of $C_{31}H_{38}O_{12}$ was suggested from an ion at 584.2249 for $[M-H_2O]^+$ (calcd for $C_{31}H_{36}O_{11}$, 584.2257) in the hrms. The structural determination of **6** was greatly simplified by a direct comparison of its mass and ¹H- and ¹³C-nmr spectral data (Table 4) with those of 19-hydroxybaccatin III. The eims of **6** was identical with that of 19-hydroxybaccatin III (17), whereas the major difference between their ¹H-nmr spectra appeared as an upfield shift of the signal due to H-7 to δ 3.86 (ddd) and a downfield shift of H-10 to 6.86 (s) for compound **6**. This observation is characteristic of the stereochemical relationship between the 7 β -OH and 7 α -OH epimers in another series of taxoids (17,43). An observation of the upfield shift of the signals for C-3 and C -5 as well as the downfield shift for C-9 is consistent with the structure of the compound **6** as a 7-epi-taxane(38). The structure of compound **6** was thus deduced to be 7-epi-19-hydroxybaccatin III.

Compound 7 showed characteristic signals at δ 189.5 and 208.9 in the ¹³C-nmr spectrum, which suggested an α -dicarbonyl structure at C-9 and C-10. The ¹H-nmr signal at δ 3.82 (1H, brd, J=12 Hz, H-7) indicated an α orientation of the 7-OH (17,38,43). Both the ¹³C- and ¹H-nmr spectra of 7 (Table 4) are quite similar to those of 10-deacetyl-10-oxo-7-epi-taxol (43), except for the absence of the side chain at the C-13 position. Therefore, the structure of the compound 7 was formulated as 10-deacetyl-10-oxobaccatin V.

Taxol is the only plant-produced antimitotic agent (44) known to promote the assembly of microtubules and inhibit the tubulin disassembly process (45,46). A good correlation between the inhibition of tubulin asssembly and cytotoxicity has been well documented (26). Kingston and coworkers (41) reported that the ring-contracted taxol derivative showed comparable activity to taxol in tublin disassembly assay. The ability of the new diterpenes **3–7** to affect microtubule assembly was examined according to the method of Lataste *et al.* (46). These compounds had little effect (ID₅₀>100 μ M) compared with that of taxol [**1**] (ID₅₀ 0.29 μ M).

In summary, we investigated the diterpenoid constituents in T. chinensis and isolated five new diterpenoids with twelve known components. Three of the new diterpenoids isolated in the present study have a novel 5/7/6-membered ring system. Natural occurrence of this type of terpenoid is hitherto unknown, and the compounds might provide useful information about the biogenesis of the taxane-type skeletons.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Melting points were determined on Yanagimoto melting point apparatus and are uncorrected. Ir spectra were recorded with JASCO IR-810 spectrometer and uv spectra with a Shimadzu UV-220 spectrophotometer. Mass spectra were measured with a JMS-DX 300 MS spectrometer, and optical rotations were taken on a HORIBA SEPA-200 polarimeter. ¹H- and ¹³C-nmr spectra were recorded using Varian Gemini-200, JEOL JNM-GZ 400, or Bruker AM-400 instruments. Analytical hplc was carried out on a JASCO Triroter instrument using a CHEMCOSORB 7DPh column (4.6×300 mm) with detection at 227 nm and using MeOH-H₂O-MeCN (20:41:39) as eluent. A JAI LC-908 model recycle HPLC was employed for preparative hplc by using a direct connection of JAIGEL 1H and 2H columns (each 20×600 mm). Cc was performed with Si gel 60 (150–325 mesh), spherical cosmic 75C18 Si gel, or Sephadex LH-20, and preparative tlc was carried out on E. Merck Si gel 60 F254 plates (0.5 mm).

PLANT MATERIAL.—*T. chinensis* was collected in November 1990 at Yunnan, China. The plant was identified by Prof. Yue Zhongsu, Kunming Institute of Botany, China, and a voucher specimen is on deposit at the same Institute.

EXTRACTION AND ISOLATION.—Dried and ground stems and needles (60 kg) were extracted with MeOH to afford 3.3 kg of the crude extract, which was diluted with H₂O and partitioned against CH₂Cl₂ to yield 850 g of the extract. The CH₂Cl₂ extract was dissolved in Et₂O and successively washed with H₂O, 5% NaHCO₃ aqueous solution, 1 N HCl, and H₂O. Concentration of the Et₂O layer under reduced pressure

gave 321 g of the residue as a mixture of neutral materials, which was then subjected to cc on Si gel. The gradient elution of the column with a solvent system of *n*-hexane/Me₂CO provided 43 fractions. Isolation and purification by repeated chromatography, including preparative hplc, tlc, and cc, and recrystallization from an appropriate solvent furnished 17 pure compounds. Taxchinins B [4], C [5] and taxagifine were isolated from fractions 19–20 in yields of 8.1×10^{-4} , 5.5×10^{-4} , and 8.3×10^{-4} %, respectively, from the dried plant material (60 kg). Baccatin VI (5×10^{-5} %) and 10-deacetylbaccatin V (4.38×10^{-3} %) were obtained from fractions 22–24. From fractions 25–26, 10 deacetyl-10-oxobaccatin V [7], baccatin IV, 1-acetoxy-5-deacetylbaccatin I, baccatin III [2], and α -conidendrin were isolated in yields of 5×10^{-4} , 1.6×10^{-4} , 7×10^{-4} , 6.2×10^{-4} , and 2.5×10^{-4} %, respectively. Taxchinin A [3] (4.7×10^{-3} %), taxol [1] (1.1×10^{-4} %), cephalomannine (8×10^{-5} %), 7-epi-10-deacetyltaxol (6×10^{-5} %), 7-epi-19-hydroxybaccatin III [6] (1.1×10^{-4}), and 19-hydroxybaccatin III (1.0×10^{-4} %) were obtained from fractions 27–31.

Taxchinin A [**3**].—Colorless plates from Et₂O: mp 208–210°, $[\alpha]^{19}D - 34.62$ (c=0.875, CH₂Cl₂). *Anal.* found C 64.38, H 6.97; calcd for C₃₃H₄₂O₁₁, C 64.50, H 6.84. Ir (CHCl₃) ν max 3550, 3350, 3025, 2975, 1720, 1650, 1360, 1240, 1060, 1020, 700 cm⁻¹; fabms *m/z* [M+K]⁺ 653, [M+Na]⁺ 637, [M+H]⁺ 615, [M-Me]⁺ 599, [M-OH]⁺ 597; eims *m/z* [M-H₂O]⁺ 596, [M-2H₂O]⁺ 578, [M-H₂O-HOAc]⁺ 518, 478, 358, 254, 236, 122, 105 (base peak), 91, 77; hrms *m/z* 578.2522 (calcd for C₃₃H₃₈O₉, 578.2516); ¹H and ¹³C nmr see Table 1.

ACETYLATION OF TAXCHININ A [3] TO THE DIACETATE 8.—A mixture of 47 mg of taxchinin A [3] and 0.5 ml each of pyridine and Ac_2O was allowed to stand at room temperature overnight. Usual workup gave the residue, which was purified by preparative tlc [CH₂Cl₂-Me₂CO (95:5)] to yield 51 mg of taxchinin A diacetate [8] in 96% yield. Mp 186–188°; fabms m/z [M+H]⁺ 699; eims m/z 580, 520, 460, 398, 236, 122, 105, 77; ¹H and ¹³C nmr see Table 1.

Taxchinin B [4].—Colorless needles from MeOH: mp 176–178°; $[\alpha]^{20}D + 7.40$ (c=0.405, CH₂Cl₂). *Anal.* found C 65.79, H 6.49; calcd for C₄₄H₅₀O₁₄, C 65.84, H 6.23. Uv (EtOH) λ max (log ϵ) 218 (4.23), 223 (4.24), 2.80 (4.23) nm; ir (KBr) ν max 3450, 3060, 2975, 1740, 1640, 1370, 1240, 1160, 1030, 720 cm⁻¹; eims *m*/z [M-H₂O]⁺ 784, [M-HOAc]⁺ 724, [M-PhCO₂H]⁺ 680, [M-PhCO-PhCH=CHCO₂H]⁺ 549, 356, 252, 219, [cinnamic acid]⁺ 148, [cinnamoyl]⁺ 131, [PhCO₂H]⁺ 122, [PhCO]⁺ 105, 91, 77; hrms *m*/z 784.3075 (calcd for C₄₄H₄₈O₁₃, 784.3094), 680.2834 (calcd for C₃₇H₄₄O₁₂, 680.2833), 549.2346 (calcd for C₂₈H₃₇O₁₁, 549.2336); ¹H nmr see Table 2; ¹³C nmr see Table 3; ¹³C-¹H Long Range COSY see Table 3; NOESY see Figure 1.

Taxchinin C [**5**].—Colorless needles from *n*-hexane/Me₂CO, mp 212–214°; $[\alpha]^{20}$ D -45.6 (*c*=3.5, CH₂Cl₂). *Anal.* found C 67.59, H 6.17; calcd for C₄₇H₅₀O₁₄, C 67.30, H 5.97. Ir (KBr) ν max 3575, 3450, 3075, 2925, 1740, 1650, 1600, 1450, 1380, 1270, 1240, 1100, 700 cm⁻¹; eims *m*/z [M-H₂O]⁺ 820, [M-HOAc-H₂O]⁺ 760, [M-PhCO₂H]⁺ 716, 598, 537, 476, 416, 356, 252, 210, [PhCO₂H]⁺ 122, [PhCO]⁺ 105, 91, 77, 60; fabms *m*/z [M+H]⁺ 839; hrms *m*/z 716.2806 (calcd for C₄₀H₄₄O₁₂, 716.2831); ¹H nmr, COSY, and NOESY see Table 2; ¹³C nmr see Table 3.

7-epi-19-Hydroxybaccatin III [**6**].—Colorless needles from Er₂O: mp 263–265°; $[\alpha]^{19}D$ –105.2 (c=0.135, CHCl₃). Anal. found C61.28, H 6.54; calcd for C₃₁H₃₈O₁₂, C 61.79, H 6.31. Ir (KBr) ν max 3420, 3075, 2950, 1720, 1650, 1380, 1260, 1110, 1080, 1030, 720 cm⁻¹; eims *m*/z [M-H₂]⁺ 600, [M-H₂O]⁺ 584, [M-2H₂O]⁺ 566, [M-OAc]⁺ 543, [M-OAc-H₂O]⁺ 525, 402, 342, 253, 191, 122, [base peak, PhCO]⁺ 105, 91, 77; fabms *m*/z [M+glycerin+H]⁺ 695, [M+Na]⁺ 625, [M+H]⁺ 603; hrms *m*/z 584.2249 (calcd for C₃₁H₃₆O₁₁, 584.2257); ¹H nmr, ¹³C nmr, and COSY see Table 4.

10-Deacetyl-10-oxobaccatin V [7].—Colorless needles from Et_2O/n -hexane: mp 170–172°; $[\alpha]^{19}D - 100.25$ (c=0.40, CHCl₃); ir (KBr) ν max 3420, 3010, 2980, 2940, 1720, 1710, 1260, 1100, 1060, 1040 cm⁻¹; eims m/z [M]⁺ 542, 524, 452, 420, 392, 314, 262, 217, 122, 105 (base peak), 91, 77; hrms m/z 542.2154 (calcd for $C_{29}H_{24}O_{10}$, 542.2152); ¹H and ¹³C nmr see Table 4.

ACKNOWLEDGMENTS

The authors thank Prof. Yue Zhongsu, Kunming Institute of Botany China, for the identification of the *Taxus* species examined in this study. Thanks are also due to Kureha Chemical Industry Co., Tokyo, Japan, for the tublin depolymerization assay and financial support.

LITERATURE CITED

- 1. M.C. Wani, H.L. Taylor, M.E. Wall, P. Coggon, and A.T. McPhail, J. Am. Chem Soc., 93, 2325 (1971).
- F. Gueritte-Voegelein, D. Guenard, F. Lavelle, M. Le Goff, L. Mangatal, and P. Potier, J. Med. Chem., 34, 992 (1991), and references cited therein.
- 3. C.S. Swindell and N.E. Krauss, J. Med. Chem., 34, 1176 (1991), and references cited therein.

- 4. E.K. Rowinsky, L.A. Cazenave, and R.C. Donehower, J. Natl. Cancer Inst., 82, 1247 (1990).
- 5. I. Ringel and S.B. Horwitz, J. Natl. Cancer Inst., 83, 288 (1991).
- 6. E. Rowinsky and R. Donehower, J. Natl. Cancer Inst., 83, 1777 (1991).
- 7. Chem. Eng. News, Sept. 2, 1991, p. 11 and March 9, 1992, p. 4.
- 8. A.E. Mathew, M.R. Mejillano, J.P. Nath, R.H. Himes, and V.J. Stella, J. Med. Chem., 35, 145 (1992).
- 9. S. Blechert and D. Guenard, in: "The Alkaloids." Ed. by A. Brossi, Academic Press, New York, 1990, Vol. 39, Chapter 6.
- 10. R.W. Miller, J. Nat. Prod., 43, 425 (1980).
- 11. D.G.I. Kingston, G. Samaranayake, and C.A. Ivey, J. Nat. Prod., 53, 1 (1990).
- K.M. Witherup, S.A. Look, M.W. Stasko, T.G. McCloud, H.J. Issaq, and G.M. Muschik, J. Liq. Chromatogr., 12, 2117 (1989).
- K.M. Witherup, S.A. Look, M.W. Stasko, T.J. Ghiorzi, G.M. Muschik, and G.M. Cragg, J. Nat. Prod., 53, 1249 (1990).
- 14. N. Vidensek, P. Lim, A. Campbell, and C. Carlson, J. Nat. Prod., 53, 1609 (1990).
- 15. F. Balza, S. Tachibana, H. Barrios, and G.H.N. Towers, Phytochemistry, 30, 1613, (1991).
- 16. D.G.I. Kingston, A.A.L. Gunatilaka, and C.A. Ivey, J. Nat. Prod., 55, 259 (1992).
- 17. J.L. McLaughlin, R.W. Miller, R.G. Powell, and C.R. Smith Jr., J. Nat. Prod., 44, 312 (1981).
- L.O. Zamir, M.E. Nedea, S. Belair, F. Sauriol, O. Mamer, E. Jacqmain, F.I. Jean, and F.X. Garneau, Tetrabedron Lett., 33, 5173 (1992).
- G. Appendino, P. Gariboldi, B. Gabetta, R. Pace, E. Bombardelli, and D. Viterbo, J. Chem. Soc., Perkin Trans. 1, 2925 (1992).
- G.P. Gunawardana, U. Premachandran, N.S. Burres, D.N. Whittern, R. Henry, S. Spanton, and J.B. McAlpine, J. Nat. Prod., 55, 1686 (1992).
- J.D. Winkler, Ed., in: "Tetrahedron Symposia-in-Print." Pergamon Press, Oxford, 1992, Vol. 48, pp. 6953-7056.
- 22. K.C. Nicolaou, C.-K. Hwang, E.J. Sorensen, and C.F. Clairborne, J. Chem. Soc., Chem. Commun., 1117 (1992).
- 23. K.C. Nicolaou, J.J. Liu, C.-K. Hwang, W.-M. Dai, and R.K. Guy, J. Chem. Soc., Chem. Commun., 1118 (1992).
- J.-N. Denis, A. Greene, D. Guenard, F. Gueritte-Voegelein, L. Mangatal, and P. Potier, J. Am. Chem. Sα., 110, 5917 (1988).
- L. Mangatal, M.-T. Adeline, D. Guenard, F. Gueritte-Voegelein, and P. Potier, *Tetrahedron*, 45, 4177 (1989).
- F. Gueritte-Voegelein, D. Guenard, F. Lavelle, M.-T. LeGoff, L. Mangatal, and P. Potier, J. Med. Chem., 34, 992 (1991).
- 27. K. Fuji, K. Tanaka, B. Li, T. Shingu, H. Sun, and T. Taga, Tetrabedron Lett., 33, 7915 (1992).
- 28. Z. Zhang, Z. Jia, Z. Zhu, Y. Cui, J. Cheng, and Q. Wang, Planta Med., 56, 293 (1990).
- 29. Z. Zhang and Z. Jia, Phytochemistry, 30, 2345 (1991).
- 30. Z. Zhang and Z. Jia, Chin. Sci. Bull., 36, 1174 (1991).
- 31. R.W. Miller, R.G. Powell, C.R. Smith Jr., E. Arnold, and J. Clardy, J. Org. Chem., 46, 1469 (1981).
- 32. D.P.D.C. Marcano and T.G. Halsall, J. Chem. Soc., Chem. Commun, 365 (1975).
- G. Chauviere, D. Guenard, C. Pascard, F. Picot, P. Potier, and T. Prange, J. Chem. Soc., Chem. Commun., 495 (1982).
- 34. J.Y. Lian, Z.D. Min, M. Mizuno, T. Tanaka, and M. Inuma, Phytochemistry, 27, 3674 (1988).
- 35. K. Sudo and A. Sakakibara, Mokuzai Gakkaishi, 23, 151 (1977).
- 36. A. Bax, "Two Dimensional NMR in liquids," D. Reidel Publishing, Holland, 1982.
- 37. J.K. Baker, Spectrosc. Lett., 25, 31 (1992).
- G.N. Chmurny, B.D. Hilton, S. Brobst, S.A. Look, K.M. Witherup, and J.A. Beutler, *J. Nat. Prod.*, 55, 414 (1992).
- 39. B.D. Hilton, G.N. Chmurny, and G.M. Muschik, J. Nat. Prod., 55, 1157 (1992).
- 40. C.J. Falzone, A.J. Benesi, and J.T.J. Lecomte, Tetrahedron Lett., 33, 1169 (1992).
- 41. G. Samaranayake, N.F. Magri, C. Jitrangsri, and D.G.I. Kingston, J. Org. Chem., 56, 5114 (1991).
- 42. A. Wahl, F. Gueritte-Voegelein, D. Guenard, M.-T. Le Goff, and P. Potier, *Tetrabedron*, **48**, 6965 (1992).
- C.H.O. Huang, D.G.I. Kingston, N.F. Magri, G. Samaranayake, and F.E. Boettner, J. Nat. Prod., 49, 665 (1986).
- 44. P.B. Schiff, J. Fant, and S.B. Horwitz, Nature, 277, 665 (1979).
- 45. M.L. Shelanski, F. Gaskin, and C.R. Cantor, Proc. Natl. Acad. Sci. USA, 70, 765 (1973).
- 46. H. Lataste, V. Senilh, M. Wright, D. Guenard, and P. Potier, Proc. Natl. Acad. Sci. USA, 81, 4090 (1984).

Received 1 February 1993